Concepts of geomorphic cycles and Land scape development | Geomorphology | Principle Of Geography

 

Geomorphology
Principle Of Geography
Geography Complete Study Material
(Paper - I)

Concepts of geomorphic cycles and Landscape development

           The earth’s crust is dynamic. You are well aware that it has moved and moves vertically and horizontally. Of course, it moved a bit faster in the past than the rate at which it is moving now. The differences in the internal forces operating from within the earth which built up the crust have been responsible for the variations in the outer surface of the crust. The earth’s surface is being continuously subjected to external forces induced basically by energy (sunlight). Of course, the internal forces are still active though with different intensities. That means, the earth’s surface is being continuously subjected to by external forces originating within the earth’s atmosphere and by internal forces from within the earth. The external forces are known as exogenic forces and the internal forces are known as endogenic forces. The actions of exogenic forces result in wearing down (degradation) of relief/elevations and filling up (aggradation) of basins/ depressions, on the earth’s surface. The phenomenon of wearing down of relief variations of the surface of the earth through erosion is known as gradation. The endogenic forces continuously elevate or build up parts of the earth’s surface and hence the exogenic processes fail to even out the relief variations of the surface of the earth. So, variations remain as long as the opposing actions of exogenic and endogenic forces continue. In general terms, the endogenic forces are mainly land building forces and the exogenic processes are mainly land wearing forces. The surface of the earth is sensitive. Humans depend on it for their sustenance and have been using it extensively and intensively. So, it is essential to understand its nature in order to use it effectively without disturbing its balance and diminishing its potential for the future. Almost all organisms contribute to sustain the earth’s environment. However, humans have caused extensive damage to the environment through over use of resources. Use we must, but must also leave it potential enough to sustain life through the future. Most of the surface of the earth had and has been shaped over very long periods of time (hundreds and thousands of years) and because of its use and misuse by humans its potential is being diminished at a fast rate. If the processes which shaped and are shaping the surface of the earth into varieties of forms (shapes) and the nature of materials of which it is composed of, are understood, precautions can be taken to minimise the detrimental effects of human use and to preserve it for posterity.


GEOMORPHIC PROCESSES 

            You would like to know the meaning of geomorphic processes. The endogenic and exogenic forces causing physical stresses and chemical actions on earth materials and bringing about changes in the configuration of the surface of the earth are known as geomorphic processes. Diastrophism and volcanism are endogenic geomorphic processes. These have already been discussed in brief in the preceding unit. Weathering, mass wasting, erosion and deposition are exogenic geomorphic processes.

        Any exogenic element of nature (like water, ice, wind, etc.,) capable of acquiring and transporting earth materials can be called a geomorphic agent. When these elements of nature become mobile due to gradients, they remove the materials and transport them over slopes and deposit them at lower level. Geomorphic processes and geomorphic agents especially exogenic, unless stated separately, are one and the same.

       A process is a force applied on earth materials affecting the same. An agent is a mobile medium (like running water, moving ice masses, wind, waves and currents etc.) which removes, transports and deposits earth materials. Running water, groundwater, glaciers, wind, waves and currents, etc., can be called geomorphic agents.Gravity besides being a directional force activating all downslope movements of matter also causes stresses on the earth’s materials. Indirect gravitational stresses activate wave and tide induced currents and winds. Without gravity and gradients there would be no mobility and hence no erosion, transportation and deposition are possible. So, gravitational stresses are as important as the other geomorphic processes. Gravity is the force that is keeping us in contact with the surface and it is the force that switches on the movement of all surface material on earth. All the movements either within the earth or on the surface of the earth occur due to gradients — from higher levels to lower levels, from high pressure to low pressure areas etc.


ENDOGENIC PROCESSES 

        The energy emanating from within the earth is the main force behind endogenic geomorphic processes. This energy is mostly generated by radioactivity, rotational and tidal friction and primordial heat from the origin of the earth. This energy due to geothermal gradients and heat flow from within induces diastrophism and volcanism in the lithosphere. Due to variations in geothermal gradients and heat flow from within, crustal thickness and strength, the action of endogenic forces are not uniform and hence the tectonically controlled original crustal surface is uneven.


Diastrophism 

        All processes that move, elevate or build up portions of the earth’s crust come under diastrophism. They include: (i) orogenic processes involving mountain building through severe folding and affecting long and narrow belts of the earth’s crust; (ii) epeirogenic processes involving uplift or warping of large parts of the earth’s crust; (iii) earthquakes involving local relatively minor movements; (iv) plate tectonics involving horizontal movements of crustal plates.

      In the process of orogeny, the crust is severely deformed into folds. Due to epeirogeny, there may be simple deformation. Orogeny is a mountain building process whereas epeirogeny is continental building process. Through the processes of orogeny, epeirogeny, earthquakes and plate tectonics, there can be faulting and fracturing of the crust. All these processes cause pressure, volume and temperature (PVT) changes which in turn induce metamorphism of rocks.


Volcanism 

       Volcanism includes the movement of molten rock (magma) onto or toward the earth’s surface and also formation of many intrusive and extrusive volcanic forms. Many aspects of volcanism have already been dealt in detail under volcanoes in the Unit II and under igneous rocks in the preceding chapter in this unit.


EXOGENIC PROCESSES 

       The exogenic processes derive their energy from atmosphere determined by the ultimate energy from the sun and also the gradients created by tectonic factors.  Gravitational force acts upon all earth materials having a sloping surface and tend to produce movement of matter in down slope direction. Force applied per unit area is called stress. Stress is produced in a solid by pushing or pulling. This induces deformation. Forces acting along the faces of earth materials are shear stresses (separating forces). It is this stress that breaks rocks and other earth materials. The shear stresses result in angular displacement or slippage. Besides the gravitational stress earth materials become subjected to molecular stresses that may be caused by a number of factors amongst which temperature changes, crystallisation and melting are the most common. Chemical processes normally lead to loosening of bonds between grains, dissolving of soluble minerals or cementing materials. Thus, the basic reason that leads to weathering, mass movements, and erosion is development of stresses in the body of the earth materials. Temperature and precipitation are the two important climatic elements that control various processes.

      All the exogenic geomorphic processes are covered under a general term, denudation. The word ‘denude’ means to strip off or to uncover. Weathering, mass wasting/movements, erosion and transportation are included in the denudation processes and their respective driving forces. It should become clear from this chart that for each process there exists a distinct driving force or energy.

       As there are different climatic regions owing to variations in thermal gradients created by latitudinal, seasonal, and land and water spread on the surface of the earth, the exogenic geomorphic processes vary from region to region. The density, type and distribution of vegetation which largely depend upon precipitation and temperature also exert influence indirectly on exogenic geomorphic processes. Within different climatic regions there may be local variations of the effects of different climatic elements due to altitudinal differences, aspect variations and the variation in the amount of insolation received by north and south facing slopes as compared to east and west facing slopes. Further, due to differences in wind velocities and directions, amount and kind of precipitation, its intensity, the relation between precipitation and evaporation, daily range of temperature, freezing and thawing frequency, depth of frost penetration, the geomorphic processes vary within any climatic region.

       Climatic factors being equal, the intensity of action of exogenic geomorphic processes depends upon type and structure of rocks. The term structure includes such aspects of rocks as folds, faults, orientation and inclination of beds, presence or absence of joints, bedding planes, hardness or softness of constituent minerals, chemical susceptibility of mineral constituents; the permeability or impermeability etc. Different types of rocks with differences in their structure offer varying resistances to various geomorphic processes. A particular rock may be resistant to one process and nonresistant to another. And, under varying climatic conditions, particular rocks may exhibit different degrees of resistance to geomorphic processes and hence they operate at differential rates and give rise to differences in topography. The effects of most of the exogenic geomorphic processes are small and slow and may be imperceptible in a short time span, but will in the long run affect the rocks severely due to continued fatigue. Finally, it boils down to one fact that the differences on the surface of the earth though originally related to the crustal evolution continue to exist in some form or the other due to differences in the type and structure of earth materials, differences in geomorphic processes and in their rates of operation.